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DYNAMIC PROGRAMMING AND PONTRYAGIN'S 

MAXIMUM PRINCIPLE 

Hans Sagan 

SUMMARY 

For an autonomous terminal control problem of not predetermined 

duration, an admissible set of inception is defined as a simply connected -- 

domain such that every point in that domain represents an initial state 

from which a given terminal state can be reached by an optimal trajectory. 

On such an admissible set of inception, Hamilton's characteristic 

function S is defined as the minimum terminal value of one state variable 

(Y,) 3 as a function of the initial state, that can be achieved by an 

optimal trajectory. If s1 is an admissible set of inception, then S is 

defined for all points in 52. 

It is shown that if there exists an admissible set of inception R 

and if S satisfies certain differentiability assumptions on R, then 

Bellman's functional equation is valid and Pontryagin's maximum principle 

follows from Bellman's functional equation. 

Two simple examples are discussed where one or the other of these 

assumptions on S2 and S are not met and hence Bellman's functional 

equation and the maximum principle as derived from this functional equation 

are not applicable, while the maximum principle in Pontryagin's general 

version is still valid and leads in both cases to optimal controls and 

optimal trajectories. 



1. STATEMENT OF PROBLEM 

We consider the terminal control problem of not predetermined 

duration of finding 

and a corresponding 

where t 
0 

is given 

a control 6 = G(t) = (u,(t),...,u,(t)) s C [t ,t,] 
s 0 

trajectory i = i(t) = (y,(t),...,y,(t)) e Ci[to,tll, 

and where t 1 is unspecified, such that 

Y:, = fo(Yl, . . . ,y ) u ,. . . , nl ",) 
. . . (1) 

= fn(Yl""'Y,, ul,...,um) 

under observation of the initial conditions 

Yobo) = 0, yl(to) = y;,...,Jgt 0 1 = y", n 

and the terminal conditions 

Y,h,) = Y1' ,*.*,Yn(tl) = Yt; 

and such that 

Yo(tl) + minimum. 

We require hereby, that for all t E [to,tl], G E U, where U denotes 

some given subset of the (ul,...,um)-space. We assume that 

f afk - E c(u x y> 
k' ayi 

(2) 

(3) 

(4) 

where Y denotes the (yl,...,yn)-space. 

The solution 6 = u(t) E Cs[to,tl] and with < e U we call the optimal 

control, and the corresponding trajectory i = i(t) we call the optimal 

trajectory. 
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Geometrically, this means that a control ; = G(t) has to be found 

such that the corresponding trajectory i = i(t) which is a solution of 

(1) emanates from the point po(o,Y;,..., yz) and terminates on the line L 

that is given by yl = yi,...,y, = y:, with the smallest possible y,- 

coordinate. (See Fig. 1.) 

y2 

Figure 1. 

In the following discussion, we will make use of two assumptions labeled 

(I) and (II) which we will now proceed to formulate. 

If there exists a simply connected domain n in (yoq...,yn)-space such 

that from every point (y,,...,y, > E Q there emanates at some t = ~~ an 

optimal trajectory i = G(t) which terminates on L for some t = 'tl and 

is such that i(t) 'remains in Q for all t E [T~,T~), then we call fi 

an admissible set of inception. -- 
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(I) There exists an admissible set of inception for the terminal control 

problem [(l),(2),(3)]. 

If S(Yo,-**, y,) denotes the mipimum of y, that is attainable by 

an optimal trajectory that emanates from (y,,.. .,y,) and terminates on L, 

then, S(yo,...,yn) which we call Hamilton's characteristic function, is 

defined for all (y,,...,y, > E S2 if Q is an admissible set of inception. 

(IIa) 

(IIb) Sty03 l . . ,Y, 

S(Y 
0’ 

l l l SY J E clw. 

exist for all (Y,, l l ’ 9Y J E a. 

2. DYNAMIC PROGRAMMING 

We will now derive Bellman's functional equation (cl], p. 135) which 

constitutes a necessary condition for a control and trajectory to be optimal, 

under the condition that (I) and (IIa) are satisfied, 

We assume that c = G(t) is an optimal control and that y = f(t) is 

the corresponding optimal trajectory of problem [(l), (2), (3)] and that tl 

is the terminal value of the independent variable. 

Let t E (to,tl) be an arbitrary, but fixed value of the independent 

variable. We replace G = c(t) in [t, t + At), where we assume that At 

is sufficiently small so that t + At E (to,tl), by a constant control 

0. 
v= (vl ,...,v,) E: u. (See Figure 2.) 

Such a variation of the original control is called a needle shaped 

variation. 
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Figure 2. 

This new control will, in general, lead away C~YXQ the point i = i(t) 

on the optimal trajectory, to a point, the coordinqtes of which are to be 

found frcm (1) by integration: 

I t+At 
yk(t + At> = y,(t) + 

t 

f,(+) ,-. l ,Jm(d,vl,-- ,vm)ds 

(5) 
= y,(t) + fo(y,(t),...,yn(t),vl,~..,vm)At+o(At), k = O,l,...,n, 

where lim 
A-k.*0 

(Note that this appraximation is permissible in 

view of (4).) If At is sufficiently small, which we will assume, then, 

(?,b + At), . . . ,f,(t + At)) E n and hence, S(g,(t + Atj,...,y,(t + At)) 

is defined. 

In particular, there exists an optimal control 4 = i(t) and a corre- 

sponding optimal trajectory 9 = i(t) that emanates from 
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(yo(t + At),...,j;,(t + At)) and terminates on L for 8-e t = tl. 

Clearly, 

NY0 ,. . . ,y,) 2 Styoh + At) ,. 9, ,?,(t + At)). (6) 

Otherwise, i = i(t) would not be the optimal trajectory because the 

control 

ii(t) for t e [to,t) 

A 
U" + for t s [t,t + At) 

i(t) for t s [t + At, il] 

would yield a trajectory that terminates on L with a smaller value than 

Yo(tl), namely, T,(i,) = S(yo(t + At),*.. ,yn(t * At)). 

We obtain from (6) by application of the mean-value theorem, obser- 

vation of (5) and (IIa) that 

WYo,* l l ,Y,) 

ayO 

* fo(yl,...,yn, vl,...,vm)At -- . . . 

as(Yo,. . . ,Y,) 
.,. - 

ayn 
8 f&,...,y,, vl,u.,wti)At + o(At) 2 0. 

Division by At and At + 0 yields 

Q(Yo v)E- 
as(Yo,-e ,YJ 

****sY n' vy-*¶ m 
ayO 

'0'~1~ n l **sY ) V& ‘). . . ,v*) - . . . 

as(Yo,. . . ,Y,) (7) 

ayn 
fn(Yl s . . . ,y 

n 1 j w ,... ,vm) 2 0 

for all points (yo,..., Y,) On the optimal trajectory $ = i(t) and for 

all G E U. 
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On the other hand, we have for any point on the optimal trajectory 

i = at> 

S(YoW,. l l ,YnW) = my;,, l l *YE) 

for all t E (to,tl) and hence, 

=as 

WY 0 ,***,Y,) 
= 

ayO 
fo(YIS .(., Yn'Ul,..'.Um) + -0: 

WYo’. l . ,Y,) 

. . . + 

ayn 
f,(Yl, l *,Yn.~~““‘um) = 0, 

l.e., 

(8) Q(Y, ,. . . ,yn,ul,. . . ,u,, = 0. 

From (7) and (8) 

msx Q(yo,...,yn,vl,~--,vm) = Q(~~r~..ry~,ulr**~*~~) = o (9) 
GEU 

for every point (yo,..., y,) on the optimal trajectory i = i(t) and for 

the values (Us,..., urn) of the optimal control 1; = c(t) that correspond 

to this point. 

Condition (g), when written in detail as 

[ 

as(Yo,. l l ,Y,) 

max - 
GEU ayO 

f,(Yl, “.,Yn.vl,*“*~m) - l -a 

as(Yo,-4Q 
ayn 

fn(Y1 # l **,Yn~vy*.,vm) 1 = 0, 

or, in the more familiar form 
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min 
as(Yo,. . . ,Y,) 

CEU [ ayO focyl* ..m,y ,v ,*r*,V n 1 m) + . . . 

+ 
as(Yo,. . . ,Y,) 

ayn 
f,(Yp . . . ,y n 1 ,v ,... ,v,, 1 = 0 

(10) 

is easily recognized as Bellman's functional equation.([l], p* 135). 

This condition has to be satisfied, by necessity, at every point 

(YO 
,...,yn) of the optimal trajectory i = i(t). The values 

Vl =u y**svm = urns for which the minimum is assumed are the values of the 

optimal control G = 6(t) at that point. 

Formula (10) assumes the well-known form of Bellman's functional 

equation ([2], p. 191) when applied to the simple variational problem 

b 
f(t,y,y')dt + minimum, y(a) = ya, y(b) = yb. 

a 

We introduce the new variables 

t 
Y, = f(s,y,y')ds, yl = ~9 y2 = t. u = Y' 

a 

and formulate this problem as a terminal control problem: 

Y; = f(Y2SYl’d 

I 

Yl =u 
I 

Y2 = 1 

with the boundary conditions y,(a) = 0, y,(a) = y,, y,(a) = a, 

Yl(tl) = yb, y2(tl) = b. For J; f(t,y,y')dt + minimum we have now 

Y,$) + minimum. (Note that y; = 1 together with y,(a) = a and 

y,(t,) = b forces 5 = b.) 

(11) 
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Since“ 

S(Y*,Y,,Y,) = Y, + S(O,Y1,Y*) (12) 

where S(0,yl,y2) is simply Hamilton's characteristic function (Bellman's 

optimal value function ([l], p. 71) P(t,y) = P(y2,yl) = S(0,yl,y2) of the 

variational problem (ll), we have 

as=, 
ay, l 

Then, replacing y19~23u by y,t,y', (10) will assume the form 

min [f(t,y,y') + $$ y' + g ] = 0. 
(Y' > 

(13) 

Bellman's recursion formula ([3], p. 85) for the appraximate computation 

of the optimal control and the optimal trajectory for the variational problem 

(11) together with a constraint of the type y' s U is obtained from (6) as 

follows: 

If the right side of (6) is considered for all possible values of GEU 

and At sufficiently small, then, 

S(Yo,Y,,YJ = min S(y-(t + At), y,(t + At), F,(t * At)) c VEU ” 

= min S(yo 
vsu 

I c 

+ f(y2,yl,v)At + o(At), yl + vAt, y2 + At). 

If we neglect o(At), which is small of higher than first order, and 

observe (12), we obtain 

Y, + S(0,yl,y2) = min [y. 
VEU 

+ f(y2,yl,v)At + S(0, yl + vAt, y2 + At)] 

which reads in terms of the Optimal value function P(t,y) and after 

9 
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cancellation of y, as 

p(t,y) = min [f(t,y,y')At+ P(t.+ At, y + y'At)]. 
y' E.U 

(This formula leads again to (13) if one applies the mean-value theorem to 

P(t + At, y + y'At), divides by At and lets At -f 0.) 

Summarizing, we may state: 

Theorem 1. 

If (I) and (IIa) hold and if 1; = G(t) is an optimal control and if 

i = i(t) is the corresponding optimal trajectory of [(l),(2) ,(3)], then 

it is necessary that 

as(Yo,. . l ;u,) 

ayO 
fO(yl 

,.. . ,yn,ul,. . . ,u,, + . . . 

as(Yo,e s l +J 

. . . + 

aY_ 

fn(Y1 3 . . ..y nl ,u ,...,u,) 

11 

[ 

asbo,g l . ,YJ 

= _min 
vsu ayO 

fO(yl 
,... ,yn,vl,. . . ,v,, + . . . 

1 as(Yo,-dn) 
. . . + 

ayn fn(Yl ,..*,y,,vl,..*,vn) 
J 

= 0 

for every point of the optimal trajectory. 

When applied to the variational problem (11) with y' E U, the condition 

becomes 

ap a? f(t,y,y') + ap y' + at = min [f(t,y,v) + cv + g ] = 0 ay VEU 

where P(t,y> is the optimal value function of the problem (11). 
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3. PONTRYAGIN'S MAXIMUM PRINCIPLE 

We use condition (9) as a point of departure to derive Pontryagin's 

maximum principle for the case where conditions (I) and (IIb) are satisfied. 

Since (yo,..., y,) E: fi and since G is open, (y, +Ayo,...,yn+ Ay,)s R 

provided (AY,)~ + . . . + (AY,)~ is sufficiently small. Since fi is an 
. 

admissible set of inception, there exists an.optimal trajectory y = y(t) 

that emanates from (y, + Ay,,...,y, + Ay,) for some t = ~~ and 

terminates on L for some t = T1' This optimal trajectory corresponds 
,. 

to an optimal control ;1 = ii(t). BY (9) 

_max Q(Yo 
VEU 

,. . . ,yn7v1,. . . ,v,) = Q(y,,.. . ,j;nriilr.. . ,iim) = 0 

,. 
for every point (yO,..., y,) on the optimal trajectory $ = y(t). Hence 

for any (ul,...,um) e U, and, inparticular, for the value of the optimal 

control 1; = c(t) that corresponds to the point (y,,...,y,) of the 

optimal trajectory y = y(t). This, together with Q(yo~~..,yn,ul,...,um)=O 

yields 

Q(Y, ,*.*,Y n' uly"" m u > = max Q(?O,...,Yn, ul,-.-,um), (14) 
(3) 

where 7 = (7 ,...,Tn) e fi. 
0 

Since fi is open, and since (IIb) is assumed 

to hold, we obtain the necessary condition 

aacy,, l l l rYnrU1r l l * ,u,) 

ay. 
-=O i=O,l , ,...,n. 

1 
(15) 
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Since 

and since fk = Y; on the optimal trajectory, we have 

and we obtain for (15) 

on 

as 

as 

& (E) = - 
i ,E, F l i$ i 

the optimal trajectory. This relation enables us to find (as) = 
aYi -Jli(t > 

functions of t along the optimal trajectory without knowledge of S, 

the solutions of a system of linear first order differential equations, 

namely 

n afk(Ylr.~~rYn,ul,.‘~,Um) 
e;w = - c 

k=O aYi 
$,(t), i ='O,l,...,n. (16) 

This is called the conjugate system to (1). Thus we see that for every 

point on the optimal trajectory and a suitable solution $ = (Go,. l .,Jln) 

of (16) 

; '@fk(yl,"' ,Yn,Vl@*** ,v,) Lo 
k=O 

for all G E U and 

; Ilk(t)fu(Yl,*~*,Yn~ul~"')Um) = 0 
k=O 

where i=(u 1' l l l ,u,) are the values of the optimal control \; = G(t) at 

the point (yl,...,y,). In terms of 
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%$,,,‘) = F $k(t)fk(yl,*** ,yn,V1,’ *- ,vm, 
k=O 

we can state that for the optimal control < = G(t) 

$g(G,Y,a = max Z(3,Y,j) 
iSU 

for every point y = (yl,...,y,) of the optimal 

= 0 

trajectory. Since 

s(yo,yl,. . . ,y,) = Y, + SuLYy l l SY,) I 

we have 
as=, 

ayO 

and hence 

$, = - 1. 

We summarize our result in 

Theorem 2. 

If (I) and (IIb) are satisfied and if 6 = G(t) is the optimal control 

and y = i(t) the c orresponding optimal trajectory of the terminal control 

problem [(l),(2),(3)], then there exists a solution $ = ($,,...,$,) with 

$, = -1 of the conjugate system (16) such that 
CI 

J-t?(* ,y,li) = max ae (i,Y,h = 0 
C&U 

for every t s (to,tl). 

This is essentially the maximum principle of Pontryagin ([4], p. 19). 

This principle holds (with $, 2 0 instead of $, = -1) even if (I) and 

(IIb) are not satisfied as Pontryagin has shown ([4], p. 75-108). 

It may be of interest to note that Bellman's functional equation (10) 

is only one step removed from the maximum principle within the limits 

imposed by (I) and (IIb). 
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This one step is the recognition of (14) and subsequent differentiation 

of Q with respect to yi it!3 and taking ayi = 0. 

4. EXAMPLES 

The assumptions (I) and (IIb), while permitting a simple and compelling 

derivation of the maximum principle, severely limit its scope of applica- 

bility. 

Assumption (I) excludes the case where the optimal trajectory, or 

portions thereof, may lie on the boundary of n. The assumption that Sl 

be open and that the optimal trajectory remain inside Sl proved essential 

in two instances. First, in the establishment of the inequality (6) and 

then again in the derivation of condition (15). Without either, the entire 

proof technique - and dynamic programming - would have to be abandoned. 

Assumption (IIa) entered in the derivation of (7) from (6) and (IIb) 

was required for (15). Again we have to state that without either, the 

argumentation which we carried out would not work. 

We will now discuss two simple examples that will clearly demonstrate 

the shortcomings of dynamic programming and the derivation of the maximum 

principle that is based on dynamic programming. 

First, we consider the problem 

I 
1 1 (1 - y'*)*dt -f minimum, y(O) = 0, y(l) = 0, ly'] ip , 
0 

which we formulate as a terminal control problem by introduction of the 

new variables 

I t Y, = (1 - y’*)*dt, yl = ~9 Y2 = t, u = y’. 
0 
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Then, 

Y; = (1 - u212 

I 

Yl =u 

I 
Y* = 1 

with the boundary conditions 

Ye(o) = 0, ~$0) = 0, y*(Q) = 0 

Y,($) = 0, y,(t,) - I 

and the minimum condition 

Yo(tl) + minimum. 

We obtain for the conjugate system 

of which $ = (-1, 0, g/16) is 

yields for the optimal control 

0, $; = 0, Icl; = 0 

a nontrivial solution. Then 

= max [-(1 - v*)* + 

IVI I$ 
&I =o 

(That this control is indeed 

optimal can be seen directly from the original fonnuJ.at$on of the problem.) 

One optimal trajectory that corresponds to the opl$.maJ control 

( 
$ for O<tL$ 

u= 
- $ for &t21 

is indicated in Fig. 3 by a bold line and other optitpal trajectories are 

indicated by dotted lines. While any point P in the shaded region R can 
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Figure 3. 

be joined to (1,O) by an optimal trajectory (see stroke-dotted line), at 

least a portion of every optimal trajectory lies on the boundary 

i 

-$y2+$ 

Yl = 

$Y*-5 

of R and hence, an admissible set of inception 8 a8 postulated in (I) 

cannot exist. We obtain for S(Y~~Y,,Y,) for (Y,,Y,) CR, --yo-, 

1 
s(Yo,YISY*) = Y, + I+ 1 dt = y, + 1 (1 - Y,) % 

y2 

and we see that (IIb) is met, at least for all (r,,r,) in the iaterior 

of R. 
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Next, we consider the problems where the duration of the process of 

transferring a moving masspoint from the state (y(O) ,y'(O)) to the 

state to,01 is to be minimized by a proper choice of a control u = u(t) 

in the equation of motion 

& 
dt* 

= u(t) 

where we require that Iu(t>l f 1. Letting 

Yl = Y> Y* = Y'r 

we may formulate this problem as a terminal control problem as follows: 

y:, = 1 

1 

Yl = Y* 

9 

y2 =u 

with the boundary conditions 

Yom) = 0, Yl(0) = Yo,, Y*(O) = Y; 

y,(t,) = 0, Y,h,) = 0 

and the minimum condition 

yo(tl) = tl + minimum. 

Application of the maximum principle yields u = + 1 ([4], p. 23-27) and 

trajectories that are depicted in Fig. 4. Assuming that these trajectories 

are indeed optimal and depending on whether the initial state (Y~,Y;) is 

in R1 or in R 2' one obtains by elementary, though cumbersome manipu- 

lations 
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u= 1; 
\ 
\ 

R2 \D 

\ 
I ) Yl 

l’ 

Figure 4. 

s(Yo,Y,.Y,+y y ) E R 
1' 2 1 

= Y, + Y2 + ? Y2/* + Yl F---- 

S(Y Y Y 1 1' 1' 2 (Y,,Y,) E R 
7 

2 
= Y, - Y* + 2 y*/* - Yl 

and we see that S is not even continuous on yl = YE/P for yl > 0. Hence, 

(IIb) cannot possibly be satisfied. On the other hand, Q is the entire 

(yo,yl,y2)-space and condition (I) is met. 

We note that, although Theorem 2 of section 3 does not apply to these 

two examples, the maximum principle of Pontryagin in its general formu- 

lation is applicable. - However, the application of dynamic programming in 

its various manifestations is not justified, 
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